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The flat plate trailing edge problem 

By FRANK E. TALKE-f AND STANLEY A. BERGER 
University of California at Berkeley 

(Received 24 February 1969 and in revised form 24 June 1969) 

The trailing edge region of a finite flat plate in laminar, incompressible flow is 
examined for the limit of high Reynolds numbers. 

It is shown that the trailing edge region is an elliptic region of O(R-f) and 
therefore a correct mathematical description must be based upon the full 
Navier-Stokes equations. 

The 'method of series truncation' is used to reduce the full Navier-Stokes 
equations, written in parabolic co-ordinates, to an infinite set of non-linear, 
coupled, ordinary differential equations. Two sets of asymptotic boundary 
conditions, called simplified and exact boundary conditions, are determined 
by matching the Navier-Stokes region downstream with Goldstein's near wake 
solution. 

By numerical integration the solutions for the first and second truncations 
are obtained for both sets of asymptotic boundary conditions. The results con- 
firm that the size of the trailing edge region is of O(R-$). 

1. Introduction 
The investigation reported in this paper is a theoretical study of the trailing 

edge region of a finite flat plate of length L in laminar, incompressible flow. The 
plate, which is of mathematical thickness zero, is aligned parallel to a flowing 
fluid of infinite extent, the undisturbed uniform velocity at  infinity upstream 
being U,. It is assumed that the Reynolds number R = Urn Llv is large so that a 
boundary layer exists downstream of the leading edge. With these assumptions 
boundary-layer theory gives a solution for the flow field along the flat plate, 
except for the region very close to the leading edge, and in the near wake, i.e. 
the Blasius solution and Goldstein's near wake solution, respectively. 

It was shown by Blasius (1908) that the introduction of a new y co-ordinate, 
y" = (gl/42,) ( (4Urn2,/v)*) along with a new stream function, $, = (Urnv2,)*f(y"), 
reduces the boundary-layer equation for the flat plate to the ordinary differen- 
tial equation f"+ff" = 0 with boundary conditions f ( 0 )  = f ' ( O )  = 0 and 
f ' ( c o )  = 2, where the velocity is given by u = (u,/Urn) = 3 f I .  

In  Goldstein's (1930) analysis the assumption is made that at  the trailing 
edge there exists a Blasius profile which is indistinguishable from the profile 
that would be found a distance L downstream from the leading edge of a semi- 
infinite flat plate; i.e. the flow along the plate up to the trailing edge is entirely 

t Present address : IBM Research Laboratory, San Jose, California. 
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unaware of the flow beyond the trailing edge. This profile is taken to be the initial 
profile, and with due regard to the new boundary conditions the flow field in the 
near wake is obtained. 

The theoretical results of the Blasius solution have been verified experiment- 
ally by Burgers (1924), Hansen (1930) and Nikuradse (1942); Goldstein’s solution 
has been confirmed by measurements of Page (1933) (Goldstein 1933, appendix) 
and of Grove, Petersen & Acrivos (1964). Thus, the above considerations suggest 
that the flow over the flat plate can be described fully on the basis of the boundary- 
layer equations. However, in the immediate neighbourhood of the trailing edge 
there is no reason why one of the essential assumptions of the boundary-layer 
theory, namely the assumption a2u/ay2 & a2u/ax2, should still hold. In  a very 
small region, where the Blasius-type profile is changing into a wake-type pro- 
file, no information can be obtained with respect to the relative magnitude of 
a2ulax2 and a2u/ay2. Therefore, a2u/ax2 is to  be retained together with a2u/@j2 
and, since a similar argument holds for the velocity component in the y direction, 
the appropriate equations describing the physical situation a t  the trailing edge 
are the full Navier-Stokes equations. Van Dyke (1967) seems to have been the 
first to indicate that the Navier-Stokes equations must be solved in this 
region. 

In  regions where the boundary-layer equations apply the transport mechanism 
consists of convection downstream and diffusion in the cross-stream direction. 
From a mathematical viewpoint the last statement expresses the fact that 
Prandtl’s boundary-layer equations are parabolic. I n  such cases, the knowledge 
of initial conditions a t  x1 = 0 is sufficient to determine completely the flow field 
for x1 > 8. This means physically that disturbances spread downstream only, 
upstream influence being completely absent. If a2u/ax2 is retained as well as 
a2u/ay2, the transport mechanism consists of one additional effect-streamwise 
diffusion. In  this case the equations are the Navier-Stokes equations, which are 
elliptic. The significance of this is that the flow slightly upstream of the trailing 
edge is not independent of that immediately downstream, disturbances are 
propagated upstream as well as downstream, and boundary conditions need to 
be specified all along the boundary. 

It was indicated above by heuristic reasoning that the region, in which the 
full Navier-Stokes equations are to be solved, is confined to the immediate 
neighbourhood around the trailing edge. This situation can now be stated 
differently by saying that the elliptic region around the trailing edge is surrounded 
by a parabolic region, or, equivalently, the trailing edge is sheltered by the bound- 
ary layer. 

Experimental and theoretical studies a t  low Reynolds numbers indicate that 
the shear stress increases as the rear end of the plate is approached. According 
to  boundary-layer theory, the distribution of shear stress is approximately con- 
stant (-l/,/Z1) in the trailing edge region, and zero along the centreline of 
the wake. Since singular behaviour can be expected in the trailing edge region, 
questions of importance which arise are: (1)  is the shear stress continuous or 
discontinuous a t  the trailing edge; (2) what is the nature of the relationship 
between the distribution of shear stress and Reynolds number; (3) how does the 
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region of influence depend on the Reynolds number? The theoretical and numeri- 
cal calculations of the following sections are meant to  be contributions toward 
answering these questions for large Reynolds numbers. 

2. Review of existing theories for the trailing edge problem 
I n  reviewing earlier work on the trailing edge problem, one finds that most 

previous attempts relied on either Prandtl's boundary-layer equations or 
Oseen-type equations, and that only very few authors have tried to treat the 
problem on the basis of the full Navier-Stokes equations. 

One of the fist attacks on this problem was KUO'S (1953) analysis, which is 
based on a perturbation of the boundary -layer equations. I n  considering the 
flow over a finite flat plate, Kuo assumed that the stream function 9 and the 
pressure p could be expanded in the form 

9 = @'(O) + €$w + e2@(2) + . . . , 
p = p 'O)+e p (1) +s2p'2'+ ..., and 

where = R-4 and p(O) = 0. It is clear that @(O) represents the Blasius solution. 
The first-order pressure is obtained by solving the problem of potential flow 
over a thin airfoil with a shape given by the displacement parabola along the 
flat plate followed by a cylindrical afterbody, since the displacement thickness 
is assumed to be constant in the wake. Once the perturbation pressure is known, 
the first-order equation for the stream function can be solved. The expression 
for the total drag coefficient of the finite flat plate is given by Kuo as CD = 

1.328 x R-6 + 4.12 R-1, the second term representing the effect of the trailing 
edge. Although the drag contribution from the leading edge has not been taken 
into consideration in this analysis, and Van Dyke ( 1 9 6 4 ~ )  questions the correct- 
ness of the factor 4-12,? the above result is found to be in very good agreement 
with experimental measurements. However, KUO'S perturbation equation for 
9") remains within the framework of boundary-layer theory, i.e. the term a2ulax2 
is still neglected to  the order of @l). Consequently, the flow in the wake does not 
exert an upstream influence on the flat plate except through the slightly changed 
pressure distribution of the potential flow, and therefore the exact nature of the 
flow a t  the trailing edge does not seem to be given correctly. 

A similar objection can be made with respect to the work of Goldburg & 
Cheng (1961)) who attacked the trailing edge problem using the method of 
strained co-ordinates (PLK method). The same authors carried out a study of 
Goldstein's wake solution, and improved the solution by rewriting and solving the 
problem in parabolic co-ordinates. The PLK method predicts the region of influ- 
ence to  be proportional to R-4, while the parabolic co-ordinate transformation 
yields R-1. It will be shown later that  the correct region of influence is proportional 
to  R-2 ; the discrepancy of Goldburg's results is most likely attributable to  the use 
of boundary-layer equations, rather than the full Navier-Stokes equations. 

t As the result of a subsequent re-examination of the series from which the value 4.12 
is obtained, Van Dyke (1969, personal communication) ha.s removed his objections to KUO'H 
original estimate of the size of this factor. 

11-2 
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Whereas the boundary-layer equations are parabolic, the Oseen equations 
are elliptic, and it appears that these latter equations reflect much better the 
physical situation at the trailing edge, if the linearization is based on a velocity 
characteristic of this region. Since in the trailing edge region, close to the wall, 
the Blasius flow is similar to a shear flow (i.e. u - [yI and v N" 0) )  it seemsreason- 
able to linearize the non-linear convection term u(au/ax) by I yI (aulax). A slightly 
different linearization is obtained by assuming that the flow approaches a wake 
flow. In this case u - y2, and the proper linearization is given by y2(au/ax). 
A linearization of the second type has been employed by Cheng (1967)) and lineari- 
zations of the first kind were used by Imai (1964) and Stewartson (1968). Although 
the mathematical solutions are involved and differ in detail, all three theories 
have in common that the linearized equations are Fourier-transformed and 
t,hen solved by the Wiener-Hopf technique. 

Imai assumes the pressure to be constant along the plate, which results in 
the boundary condition (ajay) (V2+) = 0. Stewartson shows that this boundary 
condition is not justified, and replaces it by the exact condition @ = a+/ay = 0 
at y = 0, x < 0. From Stewartson's solution it is observed that the shear stress is 
discontinuous at the trailing edge, having an algebraic singularity there. 

Results similar to Stewartson's were obtained in the numerical analysis by 
Dennis & Dunwoody (1966), using the full Navier-Stokes equations in elliptic 
co-ordinates. From this solution it is found that a singularity of the shear stress 
exists at  the trailing edge. The predictions of boundary-layer theory are 
approached as the Reynolds number increases; the singularity is pushed more and 
more towards the trailing edge, and in the limit of very large Reynolds numbers 
only a point of discontinuity remains. 

In $ 5  the solutions of Dennis & Dunwoody (1966), Imai (1964) and Stewartson 
(1968) will be taken up again, and a detailed comparison will be made with the 
solution developed in $$3 and 4. 

Finally, the recent work of Davis (1967) on the semi-infinite flat plate should 
be mentioned. Davis uses the method of series truncation; our analysis of the trail- 
edge region is closeIy related to his. 

3. Theoretical investigation of the flow near the trailing edge 
3.1. Flow re'gimes near the trailing edge 

In 3 2 the physical nature of the trailing edge was discussed, and it was suggested 
that the trailing edge is sheltered by the boundary layer. This assertion will now 
be strengthened by a mathematical analysis of the different flow regimes near 
the trailing edge. 

If the origin of the co-ordinate system is taken at  the trailing edge, with x1 
opposite to the oncoming stream and yI perpendicular to it, and if non-dimensional 

(3.1) variables are introduced by = xl/L, = yl/L, 

$ = +pI /UmL,  R = UmLIv, (3.2) 
then the full Navier-Stokes equations can be written in terms of the stream 

(3.3) function $ as 
[ + g ( a / W  - +JalaY) - (1/R)V21 V2@ = 0. 
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I n  the limit R-too, (3.3) reduces to  the inviscid Euler equation, 

[11.,(a/W - 11.z(a/aY)lv211. = 0. (3.4) 

For the present problem the flow a t  upstream infinity is irrotational and uniform, 
so that the solution of (3.4) is given by @ = y .  The region in which the Euler 
equation is valid will be called ‘region I’ (cf. figure 1) .  I n  the neighbourhood of 
the wall a non-uniformity exists, since the non-slip condition cannot be satisfied. 
This deficiency is corrected by redefining new variables, so called ‘ innervariables,’ 
and then taking the limit R-tco. It was shown by Prandtl that the correct 
inner variables are y = R-4Y and $ = R-BY, the other non-dimensional quan- 
t,ities remaining unchanged. I n  the new variables, (3.3) becomes 

U I 
l-------- 7--------- 

----- 

----- L - - - -__- 1_ _ _ - - - _ _ - _  
1 

FIGURE 1. Flow regimes near the trailing edge. 

If the limit R-tco is now taken, the boundary-layer equations of Prandtl are 

or after integration 

~ r Y , ~ - + y P ~ . ~ Y y - ~ ~ - . ~ x y  = -Y Y(X, O)\T,,(X, 0). (3.7) 

The domain of validity of the boundary-layer equations will be called ‘region 11’ 
(cf. figure 1) .  

It is obvious that the boundary-layer solution must fail a t  a distance of O(R-4) 
from the trailing edge, because at this distance x becomes of the same order as 
y .  To consider this region, x must be stretched by an amount R-fr in addition 
to  the boundary-layer variables; thus a new magnified x scale is introduced by 
defining x = R 4 X .  With the new x variable (3.5) becomes 

and in the limit R --f co this reduces to 
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Equation (3.9) is recognized as the Euler equation, which describes an inviscid 
region around the trailing edge. Because upstream of the trailing edge, the 
boundary-layer solution is valid, the above inviscid region, called henceforth 
'region 111', must match to it (cf. figure 1). Since close enough to the wall the 
Blasius flow behaves like a simple shear flow, the stream function in the inviscid 
region in the neighbourhood of the wall must vary as 

Y - iY2. (3.10) 

Although the above inviscid solution is valid in a small region around the 
trailing edge, it fails in the immediate neighbourhood of the plate, and must be 
replaced by the Navier-Stokes solution. To find the extent of the Navier- 
Stokes region, which will be called 'region IV' (cf. figure 1), the following 

(3.11 a )  additional scaling is introduced: xIV = RaX, 

YIV = R a y ,  (3.11 b )  

$lV = RBY, 
Equation (3.8) now becomes 

( 3 . 1 1 ~ )  

If (3.12) is to describe a Navier-Stokes rdgime, it is necessary that the limit pro- 
cess R-too leave the equation invariant. This condition is seen to  be satisfied 
for ,!3 = 8. I n  addition, as yrv-tco the Navier-Stokes region must match to 
region 111. Hence, the matching condition for region IV is found from (3.10) 
and, after rewriting in variables of region IV, 

(3.13) 

The last expression should not depend on the Reynolds number, thus leading to 
p = 2a7 and since ,!3 = &, it follows that oc = a. The correct scaling in the Navier- 

xIV = R*X, (3.14) Stokes region is now found to be 

(3.15) 

(3.16) 

In  the original variables, this leads to 

xlIL = x = R t X  = R-fx Iv and xIv = (x,/L)Rf, (3.17) 

or yl/L = y = R-iY = R-%yIv and yrv = (y,/L)Rs. (3.18) 

Whereas the boundary-layer region is of O(R-$), the Navier-Stokes region 
a t  the trailing edge is seen to be of O(R-2). This estimate, first recognized by Van 
Dyke (1967), Stewartson (1968)' and Riley i( 1968, unpublished), implies that 
the region of non-uniformity a t  the trailing edge is much smaller than the extent 
of the boundary layer, confirming the earlier statement describing the trailing 
edge as being sheltered by the boundary layer. 
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The discussion above is valid for more general trailing edges than that of a 
flat plate. Although in general a region 111 exists, it should be pointed out 
that for the special case of a flat plate, because there is neither creation nor diffu- 
sion of vorticity in the inviscid region, the only role of region 111 here is to convect 
the Blasius profile undistorted downstream from the boundary-layer region to 
the Navier-Stokes region. 

As the Reynolds number increases, the Navier-Stokes region decreases. 
Therefore Goldstein’s assumption of a Blasius profile at  the trailing edge is the 
appropriate initial profile for the near wake solution and, in addition, it would 
appear t o  be valid to utilize the Goldstein solution as the downstream boundary 
condition in determining the flow fieldin the interior of the Navier-Stokes region. 

3.2. Navier-Xtokes equations in parabolic co-ordinates 

If the flow over the flat plate is described in Cartesian xl, y1 co-ordinates, the 
boundary conditions are discontinuous along the line y1 = 0. This discontinuity 
causes the flow to be singular in the trailing edge region, and in addition it 
renders the mathematical analysis much more difficult. A co-ordinate system, 
which takes better account of the physical situation, is the parabolic co-ordinate 

(3.19) 
system, defined by 

Y1= (V/UrntET (3.20) 

(Throughout the paper the subscript 1 will denote dimensional co-ordinates.) 
In the transformed co-ordinates the flat plate corresponds to 7 = 0, while the 
centreline of the wake is given by ( = 0. Although a discontinuity in the boundary 
conditions still exists, the new co-ordinates have the advantage that the whole 
plate and nothing else is described by 7 = 0. The discontinuity introduced at  the 
leading edge is irrelevant for the consideration of the trailing edge region, since 
it corresponds to infinity upstream. In terms of a non-dimensional stream func- 
tion, defined by $ = ( $ J V ) ,  the full Navier-Stokes equations can now be written 
in the form 

x1 = (V/2Um) (F-r”, 

3.3. Asymptotic boundary conditions 

In 5 3.1 it was established that Goldstein’s near wake solution is the appropriate 
downstream boundary condition for the trailing edge region, the upstream boun- 
dary condition being the Blasius solution. This line of development will now be 
pursued further, resulting in the formulation of the asymptotic boundary con- 
ditions far downstream. In doing so we shall formulate simplified and exact 
boundary conditions: the former express the condition that the solution in the 
Navier-Stokes region ‘patch’ to the Goldstein solution at some asymptotic 
distance, whereas the exact boundary conditions require that the two solutions 
have the same functional form asymptotically, i.e. that they ‘match’. Although 
the latter are obviously the proper ones to impose, we include the simplified 
ones because they are computationally the easier to apply, and so permit the 
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clearest exposition of the method of solution; furthermore, they allow a useful 
comparison to be made between the solutions obtained with each of the sets of 
boundary conditions. As we shall see when we discuss the solutions, in at least 
one important result, the solutions with the simplified boundary conditions are 
in remarkable agreement with the exact boundary condition solutions. 

3.3.1. Sirnplijed boundary conditions. Expanding the velocity profiles in the 
near wake in a Taylor series, one obtains 

u = c0+c2g2+c4g4+ ..., (3.22) 

where the coefficients co, c2, c4, . . . , are obtained from Goldstein’s solution and 
jj = (y1/4L) ( (4U,L/v)b). If one defines fYl = Iu ldy l ,  (3.22) becomes after inte- 

grating fY1 c2 c373 + so&/u)a c 5 7 5  + . . -. (3.23) fY = - = coe7 + 12u,L/v 
V 

This last expression i s  meant to be an approximation to Goldstein’s stream 
function, and must be matched asymptotically by the stream function of the 
Navier-Stokes region. Therefore, (3.23) is seen to represent the asymptotic 
boundary conditions to be satisfied by the stream function of the Navier- 
Stokes region in the limit of large 7. Although in the derivation of (3.23) the 
dependence of the coefficients co, c2, c4, . . ., on the axial distance x1 is neglected, 
consideration of this point will be given in the matching process to be discussed 
in $4.2.3. 

3.3.2. Exact boundwy  conditions. Whereas the simplified boundary conditions 
are based on an approximation to Goldstein’s stream function, the ‘exact’ 
boundary conditions to be derived in this section rely on the exact expression 
of Goldstein’s stream function, which, close to the axis, is given by 

(3.24) 

The non-dimensional variables in (3.24) are defined as u = (@jay), X = (X1/4L), 
?j = (y1/4L) ( (4U,L/v)*), u = (ul/Um) and v = (vl/Um) ((4U,L/v)*), the co-ordinate 
system being located at  the trailing edge, with Z and u increasing in the down- 
stream direction. The variables %, 7 are related to the parabolic co-ordinates 

5,r by 5 = a(y2- , g 2 p  (u = 1/(2RS)), (3.25) 

(3.26) 

- 

- 
and 7 = hrc7/(72- P)*I (6 = 1/(3R*)), 
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and the stream functions by $ = 2@?. (Bars over quantities are used to denote 
variables in the Goldstein solution, whose definition differs from that used else- 
where in the paper for similar quantities. Note, for example, that XI = -xl.) 

fixed 
and letting [+ 0. Thus (3.24) becomes, after rewriting in parabolic co-ordinates 
and expanding for small values of t, 

Values on or near the centreline of the wake are considered by holding 

Since the stream function ofthe Navier-Stokesregion must match asymptotically 
to Goldstein's stream function, (3.27) represents the asymptotic bounda.ry 
condition to be satisfied by the stream function of the Navier-Stokes region 
in the limit as 7 -+ co. 

4. Mathematical and numerical solution of the trailing edge problem 

4.1. Asymptotic expansion of the full Navier-Stokes equations 

To solve the Navier-Stokes equations in the trailing edge region, we shall 
employ the 'method of series truncation', pioneered by Van Dyke (1964b, 
1965) and his students a t  Stanford. The essential idea of the method is to treat 
an elliptic partial differential equation as if it were parabolic or hyperbolic; 
i.e. the solution is expanded in powers of one co-ordinate, which plays the role of 
a time-like variable. Substitution of the series into the governing equations and 
equating like powers of the downstream variable yields a sequence of ordina,ry 
differential equations in which a t  any stage the number of unknowns exceeds 
the number of equations. The resulting indeterminacy is removed by truncating 
the series in some manner. It is assumed that as the order of the system is increased 
the corresponding solution tends to the exact solution. Although there is as yet 
no formal mathematical justification for the method, and its main applicability 
might seem to be for problems with weak backward influence, Van Dyke (1964b, 
1965) has shown that series truncation can be applied with reasonable success 
even to highly elliptic problems, if the variables are judiciously chosen. 

The asymptotic boundary conditions, derived in the previous section, suggest 
an expansion of $ in the form, 

by the method of series truncation 

Introducing (4.1) into the full Navier-Stokes equations, expressed in parabolic 
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co-ordinates, and equating equal powers of 5 results in a system of non-linear, 
coupled ordinary differential equations of fourth order, given below. 

f:” - 4 f + S27fi - 24 f I + 1207 f 3  - 67 f, f .;. - 7 fl f;“ 
+ 1 2 f l f 2 + 2 f l f ; + c r f ; f z + 7 f ; f ’ ;  = 0, (4.2a) 

- f:‘ - 2q2fiv  + 4 1  f.2‘ - 4f’; - 7]4fJv + 473fr - 64f;v2 

+ ~ 0 q f j + i i O f ~ + r ” f i f ~ + 4 0 7 2 f , f i + 2 r 2 f ,  f [ + 6 f l f ;  

+fifi”+547”fi fi+3y4f2 f ;+3672f; f2+6fy2f: l  

- 30T4f3 f‘;+ 5v4f3 f;‘ - 27””fi f g  - 407 f i  f 3 -  21 f1f i  

- 3@f; fi - 8Oqyi f - 472f; f ;  + Sf ;  f 2 +  fir’; 
- 3qtfh f - qyi f ; - 367 f - 67f7 f2 - 1 8Ov3f2 f 3  - 6r3f2 f - 1 O7l3f3fl; = 0, 

( 4 . 2 ~ )  

It can be observed that in the first equation (4.2a),  not only the functionf, 
and its derivatives occur, but also f 2  and f 3  and their derivatives. This is a pro- 
perty not only of the lowest order equation, but also of all subsequent equations, 
and therefore a t  each step of the approximation the number of unknowns exceeds 
the number of equations. 

A solution of the system (4.3a-c, . ..) is made possible by truncating the series. 
In the first, truncation, this consists of setting f z ,  f 3 ,  . . . , and their derivatives 
equal to zero, and solving the simplified equation (4.2a).  For the second trunca- 
tion, the terms f 3 ,  f4, . . . , as well as their derivatives, are assumed to be zero, and a 
solution of (4.2a) and (4.2b) must be found simultaneously. Since (4.2n) takes 
on different forms under the assumptions of the first and second truncations, 
none of the information contained in the solution of the first truncation can be 
used in obtaining the solution of the second truncation. The third truncation 
consists of solving (4.2a-c) simultaneously, the terms of order f4, f 5 ,  . . . and all 
their derivatives being neglected. 

... ... ... ... ... ... ... ... ... ... ... 

The boundary conditions along the plate are 

~ l ( ~ l ~ Y l ) l v , = o  = $l(% 0) = $ ( L O )  = 0 

and 

By (4.1) this is equivalent to 

and 

fl(0) = f 2 (0 )  = f3 (0)  = ... = 0 

f ; (o )  = &(O) = f i ( 0 )  = ... = 0. 
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The asymptotic form of the boundary conditions far downstream is given by 
(3.23) and (3.27). On comparing with (4.1), the simplified boundary conditions 
require 

... ... ... 
whereas the exact boundary conditions demand 

a 
lim.fi(T) = -573((Po+p3a372+ . . . I ,  

7-m 

(4 .5u)  

( 4 . 6 b )  

(4.6c) 

(4 .6  a,) 

( 4 . 6 ~ )  

In  ( 4 . 5 ~ - c )  and hereafter, open parentheses stand for constants which are un- 
known at  this stage, but are determined as part of the solution. 

Equations (4.2a-c), subject to the plate boundary conditions (4.3), (4.4), and 
either the asymptotic boundary conditions (4.5a-c) or (4.6a-c), describe the prob- 
lem whose discussion will occupy the remaining part of 3 4. It should be noted that 
in requiring that the series truncation solution satisfy boundary conditions a t  the 
plate and asymptotically far downstream, we are applying the method of series 
truncation in an unorthodox way. Inmost applications of the method integration 
proceeds upstream, the unstated premise being that one should swim against the 
'current' as fast aspossible, so as to minimize the effects of upstream influence (Van 
Dyke 1968, personal communication). However, as far as the authors are aware, 
there is no mathematical justification for assuming that the integration must al- 
ways proceed upstream when using series truncation. Moreover, the use of para- 
bolic co-ordinates, and the results of the solution of most interest to us, suggest 
that the direction of integration chosen here might be most appropriate. In 
particular, we are mostly interested in the shear stress distribution on the plate 
near the trailing edge and the extent of upstream influence of the trailing edge 
on the Blasius-boundary layer. By placing the ends of the integration for each on 
the fi(7) equations at  the plate surface and the wake downstream, we are, in a 
sense, most directly allowing for the influence of the end of the plate to make 
itself felt on upstream plate quantities, and it is this influence which is the essence 
of the problem. In addition, imposing our 'far' boundary condition downstream, 
rather than upstream, allows us, without prejudice, to estimate the extent of 
upstream influence as the place where the solution matches (or patches) to the 
Blasius solution. (Although the Navier-Stokes region is elliptic, and hence the 
domain of influence is the same in all directions, it  is more physically satisfying 
to define it in terms of the change in the upstream Blasius profile.) 

Once the differential equations (4 .2u-c)  are solved, the distribution of the skin 
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friction at the trailing edge can be calculated from (4.1) using the definition of 
the skin friction; this yields 

4.2. First  truncation 

4.2.1. Derivation and integration of the Jirst truncation. The first truncation 
requires the solution of the differential equation, 

7 fi“ - 4f‘“ 1 - Sfif:’ + 2 f l f ;  + r f X  = 0. 14.8) 

The associated boundary conditions are, at  7 = 0, 

f l (0 )  = 0, f ; (o)  = 0 (4.9a, b )  

and for large 71, either 

fi(7) = - ( )7 (simplified boundary conditions) (4.9c) 

or fi(7) = - + p3 a3y2 + . . .) (exact boundary conditions). ( 4 . 9 4  

In general, two-point boundary value problems of the above type can be 
solved as initial value problems by starting the integration at  7 = 0, and deter- 
mining the derivatives at  7 = 0 so as to satisfy the asymptotic boundary condi- 
tions for large values of 7. However, the numerical integration of (4.8) cannot 
begin at the origin because the highest derivative is multiplied by 7. One must 
then obtain a local analytic solution; in this case a Taylor series expansion is 
found to exist around 7 = 0, given by 

fi = a2q2 +iga,q 1 2 5  + a,77 - &Q&rs- &a2a7y10 + . . . . (4.10) 

Two arbitrary constants, a2 and a7, occur in (4.10). They are determined from the 
integral curves satisfying the asymptotic conditions, ( 4 . 9 ~ )  or ( 4 . 9 4 .  To find 
this solution the integration was performed by fixing a2 and varying a7 over a 
large range of values. The integration was carried out using a fifth-order Runge- 
Kutta scheme. (The details of the numerical analysis are given in Talke 1968.) 
A typical set of integral curves for a particular choice of a2 is shown in figure 2. 

4.2.2. Simpli$ed boundary conditions. From figure 2 it can be seen that for 
almost all values of a7 the integral solutions and their derivatives become un- 
bounded for large 7. However, the character of the curves changes as a7 ranges 
from negative to positive values. For large negative a7 the integral curves and their 
derivatives are negative for all 7, whereas they go through zero for positive a7. 
Thus, a solution curve proportional to - 7 for large 7 can be found only between 
the ‘negative’ and ‘positive’ integral curves. Since (4.8) reduces to an identity 
on introducing f l  - - k,q, f N - k,, f’; = f: = f:” = 0, the differential equa- 
tion is seen to be satisfied asymptotically by f l  - - k ly .  Therefore, a solution 
to the differential equation (4.8) subject to (4%) exists and can be obtained as 
follows. The arithmetic mean of the a, values leading to the ‘positive’ and ‘nega- 
tive’ solutions is formed, and the integration is carried out again. The a7 of the 
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resulting integral curve, which is either ‘positive’ or ‘negative’ is then combined 
with the u7 of the closest integral curve of opposite ‘sign’, and a new mean value 
a7 is calculated; this procedure is repeated until numerical convergence is ob- 
tained (cf. figure 3). Only one solution needs to be determined by iteration 
because the differential equation (4.8) as well as the boundary conditions (4 .9~-c )  
are invariant under the transformation, 

f d r )  + c - W r ) ,  r -f (1lc)r- (4.11) 

Thus fl(r) can be determined from F(cy), since f’i(0) = c3F’i(0), and therefore 

c = [gq. (4.12) 

The solution curves as a function of the parameter a2 are shown in figure 4. 

0 2 4 6 8 10 12 

7 
FIGURE 2. Integral curves for the first truncation: 

u2 = -0.02 

2 u7 = -0.1x 10-2 7 u7 = 0.1 x 10-6 
3 u7 = - 0 . 1 ~ 1 0 - 4  s u7 = 0.1 x 10-4 

5 a7 = - 0 . 1 ~  10-6 10 a, = 0.1 x 10-1 

1 a7 = - 0 . 1 ~ 1 0 - 1  6 u7 = 0.0 

4 a7 = - 0 . 6 5 4 ~  9 a, = 0.1 x 10-2 

It was pointed out in 93.3 that the simplified boundary conditions are based 
on an approximation to Goldstein’s near-wake stream function. In  addition, 
the x variation of the coefficients co, c2, c4, .. . is neglected, and therefore the solu- 
tion does not match asymptotically to Goldstein’s solution. This deficiency 
can be corrected by demanding that the Navier-Stokes solution match numeric- 
ally, i.e. patch, for large 7 with Goldstein’s solution at some distance downstream, 
say zlM,lL, i.e. 11. = - Cfi = Go& at %dI-L, 
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or equivalently (4.13) 

The non-dimensional distance ZIIyI/L, at which the numerical matching is en- 
forced, is found by assuming that the value and the axial variation of the 

1 

0 

fl 
- 1  

I I I I I I I I I  

1 13 

0 5 10 

?I 

FIGURE 3. First truncation (simplified boundary conditions). Iteration on u7. Number on 
curve represents number of iteration. 

u2 = -0.1 12 a, = -0.488 x 
1 a, = 13 a7 = -0.4395 x 
2 u7 = -10-2 23 a7 = -0.47744 x 
5 U, = -0.125 x lo-’ 

0 

- 1  
f l  

-2 

- ?  

-0 2 4 6 8 10 12 

v 
FIGURE 4. Solution curves for the first truncation (simplified boundary conditions) : 

1 u2 = -0.200 5 a2 = -0.040 
2 a2 = -0.100 6 ~2 = -0.020 
3 = -0‘080 7 u2 = -0.015 
4 a2 = -0.060 8 ~2 = -0.010 

centreline velocity distribution must be identical with Goldstein’s solution in 
the neighbourhood of slx/L. The centreline velocity is obtained from (4.1) as 

(4.14) 
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Since u, = co at the matching station, condition (4 .13 )  is seen to be contained 
in (4 .14 ) .  Therefore, the numerical matching condition for the Navier-Stokes and 
Goldstein solution is the requirement that the value and the axial distribution 
of the centreline velocity be identical in the region close to ZIM/L (corresponding 
t o  a particular value of qM). Once Z l M / L  and qM are determined (by graphical 
interpolation) such that the above condition is satisfied, the Reynolds number 

(4.15) 
is found from (3 .19)  as 

= &/F2(E1M/L) 1. 
Thus, the matching process determines for each solution curve the station 

i E I M / L  at which the best agreement of the velocity distribution with Goldstein’s 
solution is obtained. In this way the matching establishes the size of the Navier- 
Stokes region. It is found that Z1MlL increases as the Reynolds number de- 
creases (iElaa/L = 0.089 for R = 276), whereas in the limit of high Reynolds 
numbers Zl,/L becomes very small (ZIM/L - 0.001 for R = 65,600) .  These 
results are in good agreement with earlier considerations : the Navier-Stokes 
region, being of O(R-%), grows as the Reynolds number decreases, and therefore 
the appropriate boundary condition is applied ‘far’ from the trailing edge. As 
the Reynolds number increases, the Navier-Stokes region shrinks, the trailing 
edge is influenced only by its immediate neighbourhood, and the appropriate 
boundary condition is applied ‘close’ to the trailing edge. 

As a result of the matching process a one-to-one correspondence is obtained 
between solution curves and Reynolds numbers, i.e. each solution corresponds 
t o  a unique Reynolds number. 

4.2.3.  Exact boundary conditions. We now consider the solution of the differen- 
tial equation ( 4 . 8 )  subject to boundary conditions (4.9a), (4 .9b )  and ( 4 . 9 4 .  From 
( 4 . 9 4  it  can be seen that all solution curves become unbounded as q+w. 
Furthermore, higher order terms, neglected in the derivation of (4 .9 )  as well 
as in Goldstein’s theory, begin to dominate in the limit of very large q. Clearly, 
the problem as formulated diverges and loses its physical meaning as y+w. 
Therefore, the solution must be sought in a region where 7 is small enough so as 
to ensure the validity of neglecting the higher order terms. At the same time, 7 
must be large enough to admit asymptotic behaviour of the solution. With these 
assumptions the correct ‘asymptotic’ boundary condition is found from ( 4 . 9 4  as 

fl = - (+Poa)r+, (4.16a) 

or equivalently (4.16 b )  

By numerical integration of the differential equation, employing an iteration 
technique similar to the one described in the last section, a solution can be found 
satisfying the boundary conditions in a region 3 5 7 5 6 for small Reynolds 
numbers and in 4 5 q 5 12 for high Reynolds numbers. Thus the solution is 
obtained for values of 7 at which the matching of the simplified boundary con- 
ditions was carried out. 

A graph of the solution curves satisfying the exact boundary conditions 
(4.16 a or b)  is to be found in figure 5 .  As with the simplified boundary conditions, 
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a one-to-one correspondence between solution curve and Reynolds number is 
thus established. 

4.2.4. Distribution of s k in  friction and region of inJEuence. The skin friction 
defined as $cf = r/(pU:) is obtained for the trailing edge region from (4.7) by 
setting f2 = f$ = ... f3 = ... = 0; thus 

1 

0 

fl 
- 1  

- 3  

c 4  

0 - 4  6 8 1 

(4.17) 

, 

7 

FIGURE 5. Solution curves for the first trunca.tion (exact, boundary conditions) : 

1 a2 = -0.100 5 a2 = -0.020 

3 = -0.060 7 a2 = -0.010 
2 a2 = -0.080 6 U S  = -0.015 

4 = -0.040 

In figures 6 and 7 the distribution of the skin friction coefficient as a function 
of the Reynolds number is shown. It is observed that the skin friction is infinite 
at the trailing edge. Furthermore, the singularity of cf grows as the Reynolds 
number decreases. Thus, the prediction of boundary-layer theory is seen to be 
approached nicely for large Reynolds numbers. 

At some distance upstream of the trailing edge, say x,/L, the value of the 
skin friction is equal to the value of the skin friction as calculated from boundary- 
layer t,heory. This distance is assumed to represent the region of influence of the 
trailing edge, i.e. the region where the boundary-layer theory breaks down. 

From the Blasius solution, the skin friction is calculated as 

(4.18) 

(Zl is distance along the plate measured from the leading edge). At  q R / L  this 
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must be equal to (4.17), and noting that xIR = L - Z : , R ,  the region of influence is 
obtained as 

(4.19) 

If the region of influence is calculated for different Reynolds numbers from 
(4.19), and the result is plotted as ln(x,,/L) wersus 1nR (figures 8 and 9), it is 

5 

a; 

$3 

’t 

0 
0 0.05 0.10 

Z I P  

FIGURE 6. Distribution of skin friction at  the trailing edge. First truncation (simplified 
boundary conditions) : 

1 R =  20 5 R = 10,900 
2 R = 152 6 R = 65,600 
3 R = 617 7 Blasius solution 
4 R = 1810 

5 C”’”’”’-l 
a; 
’2 

0 
0 0.05 0.10 0 0.05 0.10 

FIGURE 7 Distribution of skin friction at the trailing edge. First truncation (exact 
boundary conditions) : 

1 R = 106 4 R = 7,790 
2 R = 411 5 R = 50,000 
3 R = 1220 6 Blasius solution 

found that all points lie on a straight line with the slope m = - 0.747 (simplified 
boundary conditions, cf. figure 8) and m = - 0.74 (exact boundary conditions, 
cf. figure 9). Thus the relationship between the region of influence and the Rey- 
nolds number is obtained for the simplified boundary conditions as 

( x ~ R / L )  - R-0’747, (4.20 a )  

and for the exact boundary conditions as 
( x ~ R / L )  N R-0.74. 

I2 

(4.20 6 )  
F L M  40 
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The results ( 4 . 2 0 ~ ~ )  and (4.20b) are in excellent agreement with the order of 
magnitude arguments of $3.1 ,  which led to  the prediction that the region of 
influence should be proportional to R-9. 

Further discussion of the first truncation will be postponed until $ 5 ;  the re- 
maining part of $4 is devoted to the solution of the second truncation. 

10 

1 s 
5 :  
- 1 -  

a -  
H 

0. I 

I - I l l 1  I I l l 1  I “ I  - 
- - 
- - 

- - 

- 
I I l l 1  I I l l 1  I I l l  

Q . 
H 4 

0.1 

R 

FIGURE 9. Region of influence TS. Reynolds number for the first truncation (oxact 
boundary conditions). Slope of the straight line : m = - 0.74. 

4.3 Second truncation. 

4.3.1. Derivation and integration of the second truncation. The second trunca- 
tion is obtained by setting f3 = f j  = fl = ... = f4 = ... = 0 in ( 4 . 2 ~ - c ) .  The 
equations then reduce to 

rfi” + 12qf; - 4f’: - 24fh - Oqflfi - rfif’f + 12flf2 

+ 2fif’; -f + r f X  = 0, ( 4 . 2 1 ~ )  

f:V+ )l“fi“ - 4qy; + 4f; - sj1f;-,fif’; - q”fif’; 

- 6f ;  f 2  - f if; + 3r2f f + v”f;S;I = 0. 

+ 27fI f ;  - 1 27 y2 f: - 3q2f 2 f’: + 3 67 f: + 611 f 2 f; 
( 4 . 2 1 b )  

(Equation (4 .2lb)  actually results from combining (4 .2a)  and (4.2h) in such a 
way that H number of similar terms cancel.) 
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The boundary conditions are, at 7 = 0, 

or 

L 

(4.22 a) 

(4.226) 

(4 .22~)  

The system (4.21a,b) along with boundary conditions ( 4 . 2 2 ~ ~  or d )  is a 
two-point boundary-value problem. Since the differential equations are coupled, 
the numerical integration must be carried out simultaneously. Again, a Runge- 
Kutta fifth-order scheme was employed. Similar to the first truncation, thehighest 
derivatives fZv and fiv are multiplied by 7 and y2, respectively, and therefore 
singular behaviour is present at  7 = 0. In  order to start the numerical integration, 
series expansions for small 7 must be determined. 

One finds the following series expansions, for small 7, for fl and f 2  (Talke 
1968): 

23 
a; b,) yl1 In 7 + al1yl1 + 0(7l2 In 7) + . . . (4.23 a.) 

+22.32.5.7.11 
and 

79 
f 2  = b2y2 - $ ~ ; 7 ~ 1 n  7 + b37, - 22.5.35 agy6 + ,&bZ,7' - i&a2,b,y81n 7 

190,518 23 +A( 22.34.5.7 a2 2 b  +2b2b,)78+- 22. 36. 7 a;79(ln7)2 

23 
+(241:::;pg11 a;------ 22.34.7 

3979 146,330,391 
+ -5 -- aib3+ 25.310.52.72.112 at) 79+ o(y101nq) + .... ( l1 23.35.5.7.11 

(4.236) 

We note that four free constants (a2, b,, b,, all) occur in the series expansions. 
These constants are to be determined from the integral curves which satisfy the 

12-2 
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asymptotic boundary conditions (4.22 c or a) .  The numerical integration can now 
be carried out by assigning particular values to the four undetermined constants. 

To find the dependence of the integral curves on the four constants, the 
parameters a,, b, and b, were fixed arbitrarily, and the integration was performed 
for different values of a,,. For the same values of a,,, but different values of b,, 
the integration was carried out again, a, and b,  still being fixed a5 before. There- 
after, the value of b, was changed, and every time the above procedure repeated. 
Finally, the integral curves were obtained as functions of the four parameters 
by assigning different values to a, and repeating in succession the steps indicated 
above. 

F .  E. Talke and S. A .  Berger 

4.3.2. Simplijied bozlndary conditions. In  this section the solution of the second 
truncation (4.21 a, b ) ,  subject to the simplified boundary conditions (4.22c), 
will be given. The differential equations are satisfied for large 7 by 

fl -k1% ( 4 . 2 4 ~ )  

f 2  N -k2q3 .  (4.24b) 

Thus solutions satisfying the simplified boundary conditions exist and can be 
obtained by the following iteration process : If a,, b, and b, are fixed arbitrarily, 
and a,, is varied, one finds that for large negative values of a,, the curves of 
f;" increase to plus infinity, whereas for small positive values of a,, the curves 
go to minus infinity. By iteration the value of a,, can be determined so that fiv 
remains zero or grows slowly for large 7. For this a,, the second asymptotic boun- 
dary condition f ,  N -k,q3 is thus satisfied. Examining the curves f ;  and f;" 
for the above a,,, one finds that both curves go to plus infinity if b, is large and 
positive, whereas they go to minus infinity if b, is large and negative. Therefore, 
a value of b, must exist for whichf; and f!" become zero or stay small for large 7. 
This value of b, can be determined by trial, using the arithmetic mean-value 
technique of 3 4.2.2. The integral curves obtained in this way satisfy the asympto- 
tic boundary conditions. At this stage of the solution the two constants, a, and b, 
are still arbitrary. However, from the first truncation it is known that the solu- 
tion must be sought in a certain range of a, values. Thus, the constant a, can be 
chosen arbitrarily, and therefore only b, is left unknown. This last constant is 
obtained by considering the numerical matching condition of 8 4.2.2, which 
requires that 

f d 7 )  = - ( 4 . 2 5 ~ )  

(4.25 b )  

Again, the value of vM is found from the requirements that the value and the 
axial distribution of the centreline velocity equal those of Goldstein's solution 
in the matching region. As with the first truncation, the Reynolds number 
associated with a, is found by matching f,, but a second Reynolds number is 
found from (4.25b). In  general, both Reynolds numbers are not equal and there- 
fore the procedure described above must be repeated for different values of b, 
until agreement of both Reynolds numbers is obtained. 
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In  figure 10 the solution curves are presented for a fixed value of a2. One 
observes that the solution curves f l  of the second truncation are very similar 
to the solution curves of the first truncation, if the same value of a2 is considered. 
Furthermore, it is found that a variation of b,  resulting in a change of an order of 
magnitude of f2  affects the solution curve for f l  by only a small amount. As in 

0 

0,005 

-0.01 

I I  I I I I I I I  
0 5 10 

71 
FIGURE 10. Solution curves for the second truncation (simplified boundary conditions) : 

a2 = -0.015 a2 = -0.015 
(a) ( b )  

1 b ,  = -0’00035 1 b2 = -0.00035 
2 b2 = -0.000327 2 b, = -0,000327 
3 b2 = -0.0003225 3 b, = -0.0003225 

the first truncation, a one-to-one correspondence between solution curve and 
Reynolds number is established. A comparison of the results of the first and second 
truncations shows that the Reynolds numbers associated with a certain value 
of a2 are approximately 35 yo higher for the second truncation. 

4.3.3. Exact boundary conditions. We shall now take up the solution of the 
differential equations (4.21 a, b )  subject to the exact boundary conditions. The 
considerations of 8 4.2.3 regarding the existence of a solution are still appro- 
priate, i.e. 7 must be sufficiently small so as to ensure a bounded solution, but at 
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the same time it must be large enough so as to allow ‘asymptotic‘ behaviour. 
With these assumptions the appropriate boundary conditions are 

f1= -war+ ( 4 . 2 6 ~ )  

and f, = i/?oar-*-&ab2/3g$. (4.26 b )  

Substitution of (3 .25 )  and (3 .26 ) )  and rearrangement, leads to 

and 

( 4 . 2 7 ~ )  

(4.27 b )  

The solution for the second truncation satisfying (4 .26a ,  b )  or (4 .27a ,  6 )  is found 
by an iteration process. Because of the apparent similarities to $ 4 . 3 . 2 ,  only the 
main steps of the analysis will be presented. 

With a2, b ,  and b,  fixed, an integral curve proportional to 7% can be obtained 
by iteration on all. The iteration is repeated for different choices of b,, thus 
determining the value of b, that satisfies (4 .27b) .  Two Reynolds numbers, one 
from ( 4 . 2 7 ~ )  and one from (4 .27b) )  are found in this way, and unless they are 
equal the above calculations are repeated for a different value of b,. The set of 
constants b,, b, and a,,, which makes both Reynolds numbers identical, is the 
correct set of initial conditions, and determines the unique Reynolds number 
associated with a,. 

The solution curves satisfying (4 .26a ,  b )  are shown in figure 1 1  for a fixed value 
of a2. It can be seen that the solution curves for f l  of the second truncation are 
similar to the solution curves f, of the first truncation for the same value of a2.  
The Reynolds numbers of the second truncation are approximately 25 yo higher 
than the ones calculated from the first truncation in $4.2.3. 

4.3.4. ~ i ~ € r i b ~ € ~ o n  of skin friction and region of i n ~ ~ e n c e .  The distribution 
of the coefficient of skin friction is now obtained from 

(4 .28)  

As in the first truncation, the skin friction becomes infinite at  the trailing edge. 
If &cf is calculated from (4 .28 )  no numerical matching with the Blasius value is 
found to occur; of the two sets of solutions, the curves calculated from the results 
of the exact boundary conditions approach the Blasius value closer than those 
based on the simplified boundary conditions (cf. figure 12) .  Both curves of +cf 
have in common that a clearly defined minimum exists, at  the distance 

(4 .29)  

we assume that the region of influence is given by (4 .29 ) .  Thus, a correspondence 
between Reynolds numbers and region of influence is obtained. The plot of 
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ln(x,,/L) m. 1nR shows all points to lie on a straight line with a slope m = 

- 0.752 (simplified boundary conditions, cf. figure 13) and m = - 0.759 (exact 
boundary conditions, cf. figure 14). Therefore, the functional relationship 
(x,/L) = (x,/L) (R) is given by 

xl/L N R-0.752 (simplified boundary conditions), (4.30 a )  

and x l /L  N R-0,759 (exact boundary conditions). (4.30b) 
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fl -0.5 

- 1.0 
0 

- 0.005 

0 5 10 

71 
FIGURE 11. Solution curves for the second truncation (exact boundary conditions) : 

(a )  (6) 
a, = -0.015 a,  = -0.015 
b,  = -0.000261 b, = -0.000261 

From (4.30a, b) it follows that the results of the second truncation, with respect 
to  the functional dependence (x,/L) = (x,/L) (R), are in excellent agreement with 
the theoretical predictions. There is, however, no numerical matching obtained 
with the shear stress distribution of the Blasius solution. Yet, since only two 
terms are calculated in the series expansion, a third truncation might possibly 
lie between the first and second, and thus give an even better numerical approach 
to the Blasius solution. 

5. Discussion and conclusions 
By application of the method of series truncation to the full Navier-Stokes 

equations, the flow near the trailing edge of a flat plate has been analyzed. 
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FIGURE 12. Distribution of skin friction a t  the trailing edge : 
1 Second truncation, simplified boundary condition (az = - 0.018). 
2 Second truncation, exact boundary conditions (az = - 0.018). 
3 First truncation (a, = -0.015). 
4 Blasius solution. 

R 

FIGURE 13. Region of influence vus. Reynolds number for the second truncation (simplified 
boundary conditions). Slope of the straight line: m = -0.752. 

Solutions have been obtained for the first and second truncations, for both simpli- 
fied and exact boundary conditions. The results were seen to be similar for both 
sets of boundary conditions. 

The functional dependence of the region of influence on the Reynolds number 
was found to be given by xJL - Rm, where m was determined as 

na = - 0.747 (fist truncation, simplified boundary conditions), 

rn = - 0.74 (first truncation, exact boundary conditions), 

m = - 0.752 (second truncation, simplified boundary conditions), 

m = - 0.759 (second truncation, exact boundary conditions). 

Order of magnitude arguments (53.1) indicate that we should expect m = - 0.75. 
Thus, the series truncation solution gives as the domain of influence of the 
trailing edge, results which are in remarkable agreement with the theoretical 
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prediction. The significance of this agreement lies in the fact that, as far as the 
authors are aware, this is the only analysis, either analytic or numerical, which 
yields the region of influence proportional to R--0.75, without any d priori assump- 
tion about its magnitude. Stewartson (1968), in his analysis of this problem, 
at the outset assumed the trailing edge region to be of this size, and stretched his 
variables accordingly. It is worth emphasizing again, then, that in solving the 
full Navier-Stokes equations near the trailing edge there has been no explicit 
or implicit assumption about the extent of the trailing edge region, the series 
truncation solution itself determining its size. 
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102 103 104 105 
R 

FIGURE 14. Region of influence wu9. Reynolds number for the second truncation (exact 
boundary conditions). Slope of the straight line: m = - 0.759. 

The skin friction, as calculated from the first and second truncations, was 
found to be singular a t  the trailing edge. Furthermore, throughout the trailing 
edge region cf turns out to be larger than the Blasius value. Therefore, an addi- 
tional drag acts on the plate due to  the trailing edge. Since the trailing edge 
region is of O(R-Z), the trailing edge correction will contribute to the integrated 
drag coefficient a term of O(R-%). 

Qualitatively, the results of the first truncation for the distribution of skin 
friction are in very good agreement with Dennis & Dunwoody's (1966) numerical 
calculations. However, due to the small scale of Dennis & Dunwoody's solution 
curves a detailed quantitative comparison with the present results is not possible. 
Using a somewhat different method, based much more on finite-differences 
than the original work of Dennis & Dunwoody, Dennis & Chang (1969, personal 
communication) have obtained improved results for the flat plate. However, 
due to  high accuracy standards and the resultant small grid size, solutions have 
been obtained only for Reynolds numbers up to 200. In figure 15 the predictions 
of Dennis & Chang and the present theory for the variation of skin friction near 
the trailing edge are compared for the closest corresponding Reynolds numbers 
for which results are available. Since the second truncation solution does not 
numerically patch on to the Blasius solution as one moves upstream, only the 
results for the first truncation are shown in the figure. The agreement between the 
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first truncation solution and the finite-difference solution of Dennis & Chang 
is seen to be quite good even a t  the low Reynolds numbers, for which the theory is 
weakest. Because the second truncation does not numerically match with the 
Blasius value, no further information with respect to the distribution of the 
shear stress can be obtained. Although a numerical solution of the third trunca- 
tion might be useful in this matter, limitations on the available computer 
facilities made this impossible a t  the present time. 

FIGURE 15. Distribution of skin friction a t  the trailing edge. --, first series truncntion 
with exact boundary conditions; - - - , Dennis & Chang 1969: 

1 R = 106 4 R = 200 
2 R = 411 5 Blasius solution 
3 n = 100 

After the completion of the work described in this paper, a finite-difference 
solution (Plotkin & Fliigge-Lotz 1968), completed at the same time, came to the 
attention of the authors. Plotkin & Flugge-Lotz non-dimensionalize the govern- 
ing Navier-Stokes equations in the same way as for a boundary layer, but retain 
the terms involving Reynolds number in the denominator, terms which are 
discarded in the usual boundary layer equations. With the assumption that 
lpz\ & (pvI,  the pressure a t  any x is taken as the average of the values in the 
free-stream and a t  the wall, the latter calculated from the y momentum equation. 
For this p2,  the continuity equation and x momentum equation can then be 
solved for u and v. The equations are solved by finite-differences, for Reynolds 
numbers larger than lo5, in a rectangular region about the trailing edge. The 
Blasius solution is imposed as the boundary condition a t  the upstream face. 
With this formulation, Plotkin & Fliigge-Lotz find that the region of influence 
of the trailing edge is much larger than O(R-2). I n  fact, both the Navier-Stokes 
region of O(3-s )  and the inviscid region of O ( R t ) ,  described in $3.1, are smaller 
than the mesh size in their numerical solution. For example, for R = 105, they 
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find the influence of the trailing edge extends a distance 0,05L, whereas 
R-2 L z @00018L, RA L w 0.00316L; the streamwise mesh size for this computa- 
tion was Ax = 0.006. It is not clear how this very large domain of influence comes 
about. The only mechanism responsible for upstream influence in the formulation 
of Plotkin & Flugge-Lotz is upstream diffusion, due to the u,,/R term in the 
x momentum equation. But, as noted by the authors, since R lo5 in all the 
calculations, this term is practically of negligible magnitude compared to the 
other terms, and in particular compared to the lateral diffusion term. Yet, in- 
explicably, this term causes significant diffusion to a distance three times the 
boundary-layer thickness. (As will be discussed in the next paragraph, the dis- 
placement effect of the boundary layer on the outer inviscid flow has recently 
been put forth as a mechanism that can lead to a large region of influence. This 
effect, however, is neglected in the Plotkin & Flugge-Lotz analysis, and there- 
fore cannot be responsible for this effect in their work.) The root of the paradox 
may lie in the non-dimensionalization and the numerical scheme used. This latter 
possibility is suggested by the fact that the numerical solution is strongly de- 
pendent on the mesh size. It should also be pointed out that solutions could not 
be obtained for Reynolds numbers appreciably smaller than lo6 (or for mesh 
sizes Ax < 0.0015L). Also, because of the existence of the singularity a t  the 
trailing edge, a solution can only be obtained outside the immediate neigh- 
bourhood of the trailing edge. It would be impossible to use the present formula- 
tion of Plotkin & Flugge-Lotz to consider the O(R-$) Navier-Stokes region, 
because in this region the assumptions 1pU1 < lpxl and weak upstream influence 
would be violated. 

In  addition to the numerical solution discussed above, the authors recently 
became aware, after completion of this work, of new theoretical studies of the 
trailing edge problem by Stewartson (1969) and Messiter (1969).t These analyses 
are very similar. Their authors claim that, although a Navier-Stokes region 
of size O(R-2) still exists, the boundary layer on the plate is already modified 
a t  a distance O(R-i) from the trailing edge; that is, a distance much greater 
than the O(R-8) found here. This estimate results from taking into account the 
induced pressure gradient due to the displacement effect of the boundary layer 
on the outer flow. (The order estimate R-8 is the same as that given by Lighthill 
(1953) for the upstream influence of a small disturbance in a supersonic boundary 
layer.) The intermediate region of O(R-t), for consistency, must itself be sub- 
divided into three mutually dependent subregions or ‘decks’, each of the same 
streamwise dimension O(R-Q), but with thicknesses normal to the plate of 
O(R-$),  O(R-*) and O(R-#), respectively. Stewartson and Messiter develop 
the equations appropriate for each of these subregions and the necessary con- 
ditions to match them together. (Stewartson also demonstrates that his earlier 
Oseen solution (1968) for the central Navier-Stokes region of O(R-2) is still 
valid, and can be matched to the triple deck provided that the Blasius skin 
friction value, used in the uniform-shear upstream boundary condition, is 
replaced by the actual skin friction predicted by the triple deck.) It is difficult 

t The authors thank one of the referees for having brought these papers to their atten- 
tion prior to publication. 
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to reconcile the size of the domain of influence O(R-%), claimed by these authors, 
with the O ( R 4 )  found in the present analysis. It might perhaps be simply re- 
iterated that in the solution obtained here, no & priori estimate of the domain 
was made, the basic assumption being that the Navier-Stokes solution must at 
some point pass over into the Goldstein solution. Thus any fine structure, such as 
presented by Stewartson and Messiter, should be implicitly contained in the 
present results, and as we have seen these results indicate, with remarkable 
precision, that the region of influence of the trailing edge extends upstream only 
a distance of O(R-2). 

This work was supported by the Office of Naval Research, Mechanics Branch 
(Contract Nonr-222( 45) ). 
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